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Timescales

* Rapid fluctuations in ocean surface forcing are:
- considerable in amplitude
- “fast” compared to ocean circulation
- can be considered as stochastic in time
- spatially coherent (storm tracks, standing waves)
* Ocean response — perturbation development:
- linear nonmodal
- linear modal
- nonlinear



Perturbation Development
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“Nonnormality enhances variance”, loannou (JAS, 1995)
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* Rapid fluctuations in ocean surface forcing are:
- considerable in amplitude
- “fast” compared to ocean circulation
- can be considered as stochastic in time
- spatially coherent (storm tracks, standing waves)
* Ocean response — perturbation development:
- linear modal
- nonlinear



Considerable Interest!
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and Hua (1987), Alvarez et al (1987), Niiler and Koblinsky (1989),
Brink (1989), Luther et al (1990), Samelson (1990), Garzoli and
Dimionato (1990), Large et al (1991), Samelson and Shrayer (1991),
Chave et al (1991, 1992), Lippert and Muller (1995), Fu and Smith
(1996), Muller (1997), Frankignoul et al (1997), Moore (1999),
Stammer and Wunsch (1999), Hazeleger and Drijfhout (1999), Cessi
and Louazel (2001), Sura and Penland (2002), Moore et al (2002),
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What did we observe and how predictable is it?



Questions

What does the stochastically-forced ocean
variability look like?

How do the stochastically-excited perturbations
evolve?

What is the net influence of the stochastically-
forced variability on the ocean circulation?

How effective is the NAO at exciting ocean
variability?



Conclusions

Stochastically forced variability can be as large
as intrinsic variabillity.

Nonmodal interference dominates perturbation
growth during first 10-14 days.

Significant deep circulations due to rectified
topographic Rossby waves.

NAO is optimal for inducing variance on
subseasonal timescales.

Chhak et al (2009, JPO, 39, 162-184.)



QG model (Milliff et al, 1996):
* 1/5 (zonal) X 1/6 (merid) degree resolution, 5 levels
* Wind stress derived from CCM3
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Nonmodal Linear Behaviour

Initial structure of surface
perturbation
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Perturbation enstrophy
undergoes nonmodal growth

Perturbation energy does not!
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Nonmodal Linear Behaviour
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Nonmodal Linear Behaviour
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Time Evolution of 0F, 00, and /?2
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Linear Behaviour via Ensemble Methods

100 member, 30 day ensembles forced by different wintertime
realizations of the NAO
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Deep ocean structure of 1st EOF of Enstrophy (~87%)



Nonlinear Behaviour
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Rectified deep wintertime circulation due
to Topographic Rossby Waves ~ 2Sv

(Also noted by McWilliams, 1974; Willebrand et al, 1980)



Ensemble Variance
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Observability and Stochastic Optimals (SOs)
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Entire forcing space Dimension ~ 10°

For T~10-90 days, 1st Stochastic Optimal
accounts for ~65% of variance



Stochastic Optimals
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Conclusions

Stochastically forced variability can be as large
as intrinsic variabillity.

Nonmodal interference dominates perturbation
growth during first 10-14 days.

Significant deep circulations due to rectified
topographic Rossby waves.

NAO is optimal for inducing variance on
subseasonal timescales.

Chhak et al (2009, JPO, 39, 162-184.)



Comments

* Results applicable to stochastic forcing of
ocean by other teleconnection patterns.

* Implications for interpretion of observations.
* Implications for ocean predictability.






Observability and Stochastic Optimals (SOs)
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Entire forcing space Dimension ~ 10°

For T~10-90 days, 1st Stochastic Optimal
accounts for ~65% of variance



Observability and Stochastic Optimals (SOs)
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Entire forcing space Dimension ~ 10°

T NAO variance explained
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10 ~67% ~63%
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30 ~67% ~62%
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90 ~65% ~15%




